The microbiologically influenced corrosion of 201 stainless steel by Shewanella algae was investigated via modulating the concentration of fumarate (electron acceptor) in the medium and constructing mutant strains induced by ΔOmcA. The ICP-MS and electrochemical tests showed that the presence of S. algae enhanced the degradation of the passive film; the lack of an electron acceptor further aggravated the effect and mainly affected the early stage of MIC. The electrochemical tests and atomic force microscopy characterization revealed that the ability of ΔOmcA to transfer electrons to the passive film was significantly reduced in the absence of the c-type cytochrome OmcA related to EET progress, leading to the lower corrosion rate of the steel.