Yeasts have been used for the heterologous production of a range of enzymes. However, α-L-rhamnosidase production in yeasts as well as its vast potential for biotechnological processes is less reported. α-L-Rhamnosidase is one of the important biotechnologically attractive enzymes in several industrial and biotechnological processes. In food and agriculture industries, the enzyme catalyzes the hydrolysis of hesperidin to release L-rhamnose and hesperidin glucoside, industrial removal of bitterness from citrus juices caused by naringin, and enhancing aroma in grape juices and derived beverages. In pharmaceutical and chemical industries, this enzyme is used in the structural determination of polysaccharides, glycosides and glycolipids, metabolism of gellan, conversion of chloropolysporin B to chloropolysporin C, and production of prunin. Rhamnosidases are extensively distributed in fungi and bacteria while their production from yeast sources is less reported. Yeast rhamnosidase is very important as it is produced in short-duration fermentation, with enhanced shelf life, high thermal stability, capable of retaining juice flavor, and is non-toxic for human consumption. In this review, an attempt has been made to fill up this gap by focusing on production, purification, characterization, structural and molecular biological studies of yeast rhamnosidase and its potential biotechnological applications. Keywords: Industrial applications, Naringin, Rhamnosidase, Yeast