This study conducted an acceleration corrosion test based on ASTM G85-19 standards to evaluate the durability of both steel and paint-coating. The objective was to assess the relative corrosive deterioration based on variations in the corrosive environment. In the ASTM G85-19 test method, we systematically altered the concentration of chloride and (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> to simulate different corrosive environmental conditions. The mean corrosion depth of the steel specimens was determined by quantifying weight throughout the acceleration cycle. Additionally, we measured the corrosion current output using the ACM sensor to validate the corrosive environmental condition corresponding to different acceleration cycle scenarios. Analysis of the results from the acceleration corrosion test revealed significant variations. The mean corrosion depth exhibited a range of 1.1 to 2.7-fold change, while the corrosion current showed fluctuations ranging from 1.2 to 5.7 times, contingent upon the conditions of the acceleration test, including the quantities of chloride and (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> present.