“…Permuting indices if need be, we may assume that a ∈ H 1 (PΣ n ; k) satisfies a 2,1 = 0 and a 3,4 = 0. We will show that this assumption implies that the map ψ a : I 2 → E 3 injects; hence a / ∈ R. Specifically, we will exhibit a subspace V ⊂ E 3 and a projection π : E 3 V so that the composition π • ψ a : I 2 → V is an isomorphism. Let V be the union of the sets {e 1,2 e 2,1 e 3,4 } ∪ {e 2,1 e i,j e j,i | 1 ≤ i < j ≤ n, {i, j} = {1, 2}} , {e 3,4 e 1,2 e k,1 , e 3,4 e 2,1 e 1,k , e 3,4 e 1,2 e 1,k | 3 ≤ k ≤ n} ,…”