Understanding the present and future features of atmospheric rivers (ARs) is critical for effective disaster prevention and mitigation efforts. This study comprehensively assesses the performance of ARs in Phase 6 of the Coupled Model Intercomparison Project (CMIP6) models on both seasonal and interannual timescales within the historical period and investigates the future projection of ARs under different emission scenarios on a global scale. The multi‐model mean results obtained using the PanLu detection algorithm consistently exhibit agreement with the observational AR climatology and capture interannual fluctuations as well as the relationships with large‐scale drivers. The future projections reveal increased AR frequency, intensity, duration, and spatial extent and decreased landfall intervals with regional variations and seasonal fluctuations. Besides, the AR frequency increase will accelerate around the middle of the century, attributed to a non‐linear rise in surface temperature. Furthermore, mid‐latitude ARs are gradually shifting toward higher latitudes in both hemispheres under SSP585, with Greenland experiencing a substantial increase in AR frequency and AR‐induced precipitation. The hydrological implications arising from more frequent ARs are manifested more prominently in AR‐induced heavy precipitation (HP), with regions historically characterized by lower AR occurrence also receiving a higher percentage of precipitation from ARs. At last, an incremental decomposition highlights the dominant role of thermal effects and relatively limited contributions from dynamical effects in AR changes. Besides, the interplay between regionally divergent temperature amplification results in different dynamically driven AR responses across the globe.