Mitochondrial aldehyde dehydrogenase 2 (ALDH2) in the liver removes toxic aldehydes including acetaldehyde, an intermediate of ethanol metabolism. Nearly 40% of East Asians inherit an inactive ALDH2*2 variant, which has a lysine-for-glutamate substitution at position 487 (E487K), and show a characteristic alcohol flush reaction after drinking and a higher risk for gastrointestinal cancers. Here we report the characterization of knockin mice in which the ALDH2(E487K) mutation is inserted into the endogenous murine Aldh2 locus. These mutants recapitulate essentially all human phenotypes including impaired clearance of acetaldehyde, increased sensitivity to acute or chronic alcohol-induced toxicity, and reduced ALDH2 expression due to a dominant-negative effect of the mutation. When treated with a chemical carcinogen, these mutants exhibit increased DNA damage response in hepatocytes, pronounced liver injury, and accelerated development of hepatocellular carcinoma (HCC). Importantly, ALDH2 protein levels are also significantly lower in patient HCC than in peritumor or normal liver tissues. Our results reveal that ALDH2 functions as a tumor suppressor by maintaining genomic stability in the liver, and the common human ALDH2 variant would present a significant risk factor for hepatocarcinogenesis. Our study suggests that the ALDH2*2 allele-alcohol interaction may be an even greater human public health hazard than previously appreciated. ALDH2*2 polymorphism | Asian flush | alcohol metabolism | mouse model | liver cancer M itochondrial aldehyde dehydrogenase 2 (ALDH2) is essential for alcohol detoxification. It is the second enzyme in the major oxidative pathway of alcohol metabolism, removing acetaldehyde (ACE), a toxic intermediate product from ethanol metabolism (1). More than 500 million people worldwide, mostly in East Asia, have a G-to-A point mutation in their ALDH2 gene (2, 3). This mutation results in a glutamic acid-to-lysine substitution at residue 487 (E487K) of the human ALDH2 protein (designated ALDH2*2). ALDH2*2 has significantly reduced ability to metabolize ACE (4, 5). Importantly, its activity is partially dominant-negative over that of the wild-type ALDH2*1, due to the structural alterations introduced by the mutation to the ALDH2 homotetramer complex (6). As a result, individuals with a heterozygous ALDH2*2/2*1 genotype have less than half the wild-type activity, and ALDH2*2/2*2 homozygotes have very low residual activity (7). Accumulated ACE can cause an alcohol flush reaction, commonly found in Asians with this variant after alcohol consumption (also called "Asian glow").ACE binds to cellular proteins and DNA, leading to DNA damage and organ injury (8). Specifically, endogenous aldehydes are detrimental to hematopoietic stem cells that are defective in Fanconi anemia DNA repair (9, 10). As a result, Fanconi anemia patients with the ALDH2*2 allele exhibit accelerated disease progression (11). ALDH2*2 can also increase the risk for gastrointestinal cancers, such as gastric carcinoma (12), esophagea...