Existence of a proton-translocating ATPase on the tonoplast of higher plants has been further confirmed by use of two experimental systems: (a) intact isolated vacuoles from sugarcane cells and (b) vesicles prepared from the same source. Addition of MgATP to vacuoles polarized the tonoplast by 40 millivolts to a value of +20 millivolts, but a large preexisting pH gradient across the membrane restricted the pH change to 0.2 unit. In vesicle preparations, the tonoplast was polarized to +66 millivolts by the addition of MgATP and the intravesicular space was acidified by 1 pH unit to pH 5.5. Proton translocation equilibrium is controlled by the protonmotive potential difference, maximal at 125 millivolts for sugarcane cells. Energization of the tonoplast occurred at physiological concentrations of MgATP. Specificity of MgATP for proton translocation was indicated by a much smaller effect of MgADP and MgGDP on the electrochemical gradient, although these substrates were also hydrolyzed by tonoplast preparation.In recent years, availability ofbetter methods ofisolating intact functional vacuoles from higher plants has permitted better insight into the physiology and biochemistry of this organelle (5,20,25). A tonoplast-bound ATPase which functions in energizing the membrane exists in higher plants (4,24,26). The evidence for this phenomenon comes predominantly from small fungal vacuoles (10), lysosome-like membrane vesicles (13), and microsomal membrane fractions (3,6,19