Typically, the mitigation of coastal erosion is achieved by amending surface conditions using materials, such as concrete. The objective of this study is to evaluate the feasibility of constructing artificial beachrocks using natural materials (e.g., microbes, sand, shell, pieces of coral, and seaweed, etc.) within a short time, and to propose the method as a novel strategy for coastal protection. Initially, a survey on resistivity and a multichannel analysis of seismic waves (MASW) were conducted along the coastal lines to characterize and elucidate the subsurface structure of existing beachrocks in the Southeast Yogyakarta coastal area, Krakal-Sadranan beach, Indonesia. The field survey on natural beachrocks suggested that both resistivity and shear wave velocity were higher in the deeper deposits compared to the underlying unconsolidated sand layer within a depth of approximately 1.5 m and covering an area of 210.496 m 2 for the α-section and 76.936 m 2 for the β-section of beachrock deposit. The results of the sand solidification test in the laboratory showed that treated sand achieved unconfined compressive strength of up to around 6 MPa, determined after a treatment period of 14 days under optimum conditions.