The impact of ceftriaxone pharmacokinetic alterations on protein binding and PK/PD target attainment still remains unclear. We evaluated pharmacokinetic/pharmacodynamic (PK/PD) target attainment of unbound ceftriaxone in critically ill patients with severe community-acquired pneumonia (CAP). Besides, we evaluated the accuracy of predicted vs. measured unbound ceftriaxone concentrations, and its impact on PK/PD target attainment. A prospective observational cohort study was carried out in adult patients admitted to the intensive care unit with severe CAP. Ceftriaxone 2 g q24h intermittent infusion was administered to all patients. Successful PK/PD target attainment was defined as unbound trough concentrations above 1 or 4 mg/L throughout the whole dosing interval. Acceptable overall PK/PD target attainment was defined as successful target attainment in ≥90% of all dosing intervals. Measured unbound ceftriaxone concentrations (CEFu) were compared to unbound concentrations predicted from various protein binding models. Thirty-one patients were included. The 1 mg/L and 4 mg/L targets were reached in 26/32 (81%) and 15/32 (47%) trough samples, respectively. Increased renal function was associated with the failure to attain both PK/PD targets. Unbound ceftriaxone concentrations predicted by the protein binding model developed in the present study showed acceptable bias and precision and had no major impact on PK/PD target attainment. We showed suboptimal (i.e., <90%) unbound ceftriaxone PK/PD target attainment when using a standard 2 g q24h dosing regimen in critically ill patients with severe CAP. Renal function was the major driver for the failure to attain the predefined targets, in accordance with results found in general and septic ICU patients. Interestingly, CEFu was reliably predicted from CEFt without major impact on clinical decisions regarding PK/PD target attainment. This suggests that, when carefully selecting a protein binding model, CEFu does not need to be measured. As a result, the turn-around time and cost for ceftriaxone quantification can be substantially reduced.