For more information on the USGS-the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment-visit https://www.usgs.gov or call 1-888-ASK-USGS.For an overview of USGS information products, including maps, imagery, and publications, visit https://store.usgs.gov.Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner.
DatumHorizontal coordinate information is referenced to the North American Datum of 1983 (NAD 83).
viii
Supplemental InformationConcentrations of chemical constituents in water are given in either milligrams per liter (mg/L) or micrograms per liter (µg/L).
Abbreviations
Significant FindingsThe U.S. Geological Survey and Bureau of Reclamation collected water-quality data from March 2012 to March 2015 at locations in the Lost River and Klamath River Basins, Oregon, in an effort to characterize water quality and compute a nutrient budget for the Bureau of Reclamation Klamath Reclamation Project. The study described in this report resulted in the following significant findings:• Total phosphorus (TP), total nitrogen (TN), 5-day biochemical oxygen demand (BOD 5 ), and 5-day carbonaceous biochemical oxygen demand (CBOD 5 ) loads, calculated using the U.S. Geological Survey LOADEST software package at the upper and lower boundaries of the Klamath Reclamation Project, indicated higher loads at the upper boundary on the southern end of Upper Klamath Lake upstream of the Bureau of Reclamation A Canal diversion compared to the lower boundary on the Klamath River downstream of Keno Dam. Accounting for the diversion of loads down A Canal, BOD 5 and CBOD 5 loads decreased between these two sites during irrigation season, indicating that the Klamath Reclamation Project is not a large source of oxygen-demanding material and that much of the oxygen demand at study site FMT, the northern boundary of the study area, has been expressed by the time the same water passes through site KRK, the southern boundary of the study area.• An evaluation of the nutrient balance along the Klamath River flowpath from sites FMT to KRK indicated that, during irrigation season in the 3 years of the study period (March 2012-March 2015, more loads of TP, TN, BOD 5 , and CBOD 5 were being diverted from the Klamath River than were being added to the Klamath River from the combination of Klamath Straits Drain, regulated point sources along the Klamath River, and internal loading from the bottom sediments in the river. By contrast, during non-irrigation seasons, more loads were added to the Klamath River than were diverted through Ady and North Canals, and this difference primarily was due to additional loads to the river from the Lost River Diversion Channel.• At the Lost River Diversion...