The article focuses on the topical issues of studying the microstructure, physical-and-mechanical and tribological parameters of the surface layers of a “ring-cylinder liner” friction pair subjected to laser processing. The analysis of the main defects of the elements of the cylinder-piston group of the internal combustion engine, methods for their recovery and increase of tribotechnical characteristics has been carried out. It is noted that the most effective means of increasing the wear resistance of the “ring-cylinder liner” friction pair are various types of heat and chemical-heat treatment of the working surface of the link. As a result of tribological studies, it was found that there is an increase in the wear resistance of a “ring – cylinder liner” friction pair in all the investigated laser exposure modes, taking into account the identified boundary processing conditions for one and the other interfacing elements. The maximum value of wear resistance is observed during laser thermal strengthening of both mating surfaces, at critical levels of laser energy density, which do not cause melting and microcracks in the surface layer. In this case, the wear resistance of the modified surface of the cylinder liner can increase 4.5...5 times, and more than three times for the piston rings.