Purpose: Neurovascular interventional procedures using biplane fluoroscopic imaging systems can lead to increased risk of radiation-induced skin injuries. The authors developed a biplane dose tracking system (Biplane-DTS) to calculate the cumulative skin dose distribution from the frontal and lateral x-ray tubes and display it in real-time as a color-coded map on a 3D graphic of the patient for immediate feedback to the physician. The agreement of the calculated values with the dose measured on phantoms was evaluated. Methods: The Biplane-DTS consists of multiple components including 3D graphic models of the imaging system and patient, an interactive graphical user interface, a data acquisition module to collect geometry and exposure parameters, the computer graphics processing unit, and functions for determining which parts of the patient graphic skin surface are within the beam and for calculating dose. The dose is calculated to individual points on the patient graphic using premeasured calibration files of entrance skin dose per mAs including backscatter; corrections are applied for field area, distance from the focal spot and patient table and pad attenuation when appropriate. The agreement of the calculated patient skin dose and its spatial distribution with measured values was evaluated in 2D and 3D for simulated procedure conditions using a PMMA block phantom and an SK-150 head phantom, respectively. Dose values calculated by the Biplane-DTS were compared to the measurements made on the phantom surface with radiochromic film and a calibrated ionization chamber, which was also used to calibrate the DTS. The agreement with measurements was specifically evaluated with variation in kVp, gantry angle, and field size. Results: The dose tracking system that was developed is able to acquire data from the two x-ray gantries on a biplane imaging system and calculate the skin dose for each exposure pulse to those vertices of a patient graphic that are determined to be in the beam. The calculations are done in real-time with a typical graphic update time of 30 ms and an average vertex separation of 3 mm. With appropriate corrections applied, the Biplane-DTS was able to determine the entrance dose within 6% and the spatial distribution of the dose within 4% compared to the measurements with the ionization chamber and film for the SK150 head phantom. The cumulative dose for overlapping fields from both gantries showed similar agreement. Conclusions: The Biplane-DTS can provide a good estimate of the peak skin dose and cumulative skin dose distribution during biplane neurointerventional procedures. Real-time display of this information should help the physician manage patient dose to reduce the risk of radiation-induced skin injuries. C 2016 American Association of Physicists in Medicine. [http://dx