The gut microbiota communicates with the brain through several pathways including the vagus nerve, immune system, microbial metabolites and through the endocrine system. Pathways along the humoral/immune gut microbiotabrain axis are composed of a series of vascular and epithelial barriers including the intestinal epithelial barrier, gut-vascular barrier, blood-brain barrier and blood-cerebrospinal fluid barrier. Of these barriers, the relationship between the gut microbiota and blood-cerebrospinal fluid barrier is yet to be fully defined. Here, using a germ-free mouse model, we aimed to assess the relationship between the gut microbiota and the integrity of the blood-cerebrospinal fluid barrier, which is localized to the choroid plexus epithelium. Using confocal microscopy, we visualized the tight junction protein zonula occludens-1, an integral aspect of choroid plexus integrity, as well as the choroid plexus fenestrated capillaries. Quantification of tight junction proteins via network analysis led to the observation that there was a decrease in the zonula occludens-1 network organization in germ-free mice; however, we did not observe any differences in capillary structure. Taken together, these data indicate that the blood-cerebrospinal fluid barrier is another barrier along the gut microbiotabrain axis. Future studies are required to elucidate its relative contribution in signalling from microbiota to the brain.