“…Various analytical techniques have been proposed for determination of copper including spectrophotometric methods [8][9][10][11][12][13][14], atomic absorption spectrometry (AAS) [15,16], cold vapour AAS or flame AAS with electrothermal atomization [17,18], inductively coupled plasma emission spectrometry [19,20], gravimetry [21,22], chromatography [23,24], and anodic stripping voltam- 3.1 × 10 −6 5 × 10 −6 to 5 × 10 −2 5 29.8 Na + , Ni 2+ , Hg 2+ [33] 3,4,10,11-Tetraphenyl-1,2,5,8,9,12,13-octaaza-cyclotetra-deca-7,14-dithizone-2,4,9,11-tetraene 1.6 × 10 −6 1 × 10 −5 to 1 × 10 −2 2 2 7 N a + , K + , Mg 2+ , Ca 2+ , Ba 2+ , Zn 2+ , Cd 2+ , Hg 2+ , Pb 2+ , Fe 3+ , Al 3+ [34] 1,15-Diaza-3,4;12,13-dibenzo-5,8,11,18,21-pentaoxacyclotrieicosane-2,14-dione 1.2 × 10 −5 1 × 10 −5 to 1 × 10 −1 20 30.0 Na + , K + , Cs + , Sr 2+ [35] Aza-thioether crown containing a 1,10-phenanthroline 8.0 × 10 −6 1 × 10 −5 to 1 × 10 −1 15 29.4 Ag + , La 3+ [36] 2 -Picolyl sym-dibenzo-16-crown-5 ether 1.0 × 10 −6 1 × 10 −5 to 1 cost of the carrier synthesis [35,37,45,61]. In fact, the described sensors, although being prepared independently, have rather similar parameters (e.g.…”