Bioremediation is a biological process to remove or neutralize environmental pollutants. This study was carried out to investing at the efficacy of arsenic resistant endophytic bacteria isolated from Pteris vittata, Pityrogramma calomelanos, Blenchum orientale, and Nephrolepis exaltata, which grow in a highly arsenic (As) contamination mining site in Vietnam. Their segmented roots, stems, and leaves were homogenized separately and inoculated on LB agar plates containing 5mM As(III) and As(V). A total of 31 arsenic resistant endophytic strains were selected, in which strain R2.5.2 isolated from the root of P. calomelanos had the highest arsenic resistant capability. Strain R2.5.2 tolerated up to 320 mM and 160 mM of arsenate and arsenite, respectively. The strain developed well on a media of 0.1 5% NaCl, at 20-40ºC and pH 5 9, and actively utilized most of the sugar sources. It had a high IAA biosynthesis capacity with an average concentration of 19.14 mg/L, tolerated to 0.5-16 mM concentration of Ag+, Hg2+, Co2+, Ni2+, Cu2+, Cr4+, and reduced As(V). Based on 16s rDNA, R2.5.2 was identified as Priestia megaterium. The ars C gene coding for arsenate reductase catalyzing reduction of As(V) was successfully amplified in P. megaterium R2.5.2. The selected strain may have potential use for bioremediation practice.