Providing quantitative microzonation results that can be taken into account in urban land-use plans is a challenging task that requires collaborative efforts between the seismological and engineering communities. In this study, starting from the results obtained by extensive geophysical and seismological investigations, we propose and apply an approach to the Gubbio basin (Italy) that can be easily implemented for cases of moderate-to-low ground motion and that takes into account not only simple 1D, but also more complicated 3D effects. With this method, the sites inside the basin are classified by their fundamental resonance frequencies, estimated from the horizontal-to-vertical (HVNSR) spectral ratio applied to noise recordings. The correspondence between estimates of the fundamental frequency from this method and those derived from earthquake recordings was verified at several calibration sites. The amplification factors used to correct the response spectra are computed by the ratio between the response spectra at sites within the basin and the response spectra at a hard-rock site using data from two seismic transects. Empirical amplification functions are then assigned to the fundamental frequencies after applying an interpolation technique. The suitability of the estimated site-specific correction factors for response spectra was verified by computing synthetic response spectra for stations within the basin, starting from the synthetic recording at a nearby rock station, and comparing them with observed ones.