Abstract. Food can impact the pharmacokinetics of a drug product through several mechanisms, including but not limited to, enhancement in drug solubility, changes in GI physiology, or direct interaction with the drug. Significant food effects complicate development of new drugs, especially when clinical plans require control and/or monitoring of food intake in relation to dosing. The prediction of whether a drug or drug product will show a human food effect is challenging. In vitro models which consider physical-chemical properties can classify the potential for a compound to demonstrate a positive, negative or no food effect, and may be appropriate for screening compounds at early stages of drug discovery. When comparing various formulations, dissolution tests in biorelevant media can serve as a predictor of human drug performance under fasted and fed conditions. Few in vivo models exist which predict the magnitude of change in pharmacokinetic parameters in humans when dosing in the presence of food, with the dog appearing to be the most studied species for this purpose. Control of gastric pH, as well as the amount and composition of the fed state in dogs are critical parameters to improving the predictability of the dog overall as a food effect model. No single universal model is applicable for all drugs at all stages of drug development. One or more models may be required depending whether the goal is to assess potential for a food effect, determine the magnitude of change in pharmacokinetic parameters in the fed/fasted state, or whether formulation efforts have the ability to mitigate an observed food effect.