The various enzyme systems and low molecular weight (LMW) redox agents are related to the folding and polymerization of prolamins in the ripening wheat grains and the formation of baking quality. Protein disulfide isomerases (PDIs) and cyclophylins accelerate "correct" folding of prolamins, which is most likely necessary for the subsequent formation of the macromolecular structure of the gluten protein matrix. PDIs are also involved in the polymerization of prolamins, catalyzing the oxidation of protein sulfhydryl groups. Molecular chaperone binding BiP protein facilitates folding of prolamins, with its role increasing in the stressful conditions. Reducing systems of thioredoxin and glutaredoxin, LMW redox pairs GSH/GSSG and Asc/DHAsc, thiol oxidases, and lipoxygenases (LOXs) regulate redox balance and the rate of polymerization of prolamins at the different stages of grain ripening. Additionally, LOX is probably involved in the protein-starch-lipid interactions between the starch granule and the protein matrix, mediated by puroindolines, determining the formation of grain texture. It is assumed that the high variability of baking quality in different environmental conditions is due to the interaction of labile enzyme systems with the storage proteins in the developing wheat caryopsis.