Additional information is available at the end of the chapter http://dx.doi.org/10.5772/48276
IntroductionWireless Sensor Networks (WSNs) have gained worldwide attention in recent years, particularly with the proliferation of Micro-Electro-Mechanical Systems (MEMS) technology which has facilitated the development of smart sensors. Smart sensors are small devices composed of one or more sensors, a memory, a processor, a power supply and a radio unit. They can sense the environment, measure and send data wirelessly to control unit for further processing and decisions. WSNs have great potential for many applications such as habitat monitoring (Polastre et al., 2004), intrusion detection and target tracking and surveillance (Arora et al., 2004), oceanography (Tateson et al., 2005), environmental monitoring (Barrenetxea et al., 2008a(Barrenetxea et al., , 2008bPadhy et al., 2005;Selavo et al., 2007), structural health monitoring (Paek et al., 2005), infrastructure monitoring (Stoianov et al., 2007), precision agriculture (Langendoen et al., 2006), biomedical health monitoring (Gao et al., 2005), and hazardous environment exploration and seismic sensing (Werner-Allen et al., 2006). Structures, including bridges, buildings, dams, pipelines, aircraft, ships, among others, are complex engineered systems that ensure society's economic and industrial prosperity. Monitoring systems have been implemented for these structures to monitor their operation and behaviour against incidents. The monitoring system is primarily responsible for collecting the measurement output from sensors installed in the structure and storing the measurement data within a central data repository. To guarantee that measurement data are reliably collected, structural monitoring systems employ wires for communication between sensors and the repository. While wires provide a very reliable communication link, their installation in structures can be expensive and labour-intensive. With the emergence of wireless sensor technologies, industrial and academic groups have started to investigate the feasibility of WSN Wireless Sensor Networks -Technology and Applications 286 to replace the current wired monitoring systems (Lynch et al., 2006). Ships constitute an important part of modern systems widely used in armed conflicts and commercial purposes such as fishing and transporting passengers and cargos. Ships manufacturers and navy companies aim to use automation on board ships as much as possible in order to improve security and reduce the number of crew members. Modern ships are equipped with automatic monitoring systems which control and ensure the safety and accuracy of the whole ship operation. Current shipboard monitoring systems use extensive lengths of cables to connect several thousands of sensors to central control units. Tens of kilometres of cables may be installed on board a ferry-boat, increasing its cost, weight and architecture complexity. In addition to the high cost of wires installation during ships construction, vessels represent a complex...