Abstract. Here we present a proof of concept cross-platform normalization approach to convert raw mass spectra acquired by distinct desorption ionization methods and/ or instrumental setups to cross-platform normalized analyte profiles. The initial step of the workflow is database driven peak annotation followed by summarization of peak intensities of different ions from the same molecule. The resulting compoundintensity spectra are adjusted to a method-independent intensity scale by using predetermined, compound-specific normalization factors. The method is based on the assumption that distinct MS-based platforms capture a similar set of chemical species in a biological sample, though these species may exhibit platform-specific molecular ion intensity distribution patterns. The method was validated on two sample sets of (1) porcine tissue analyzed by laser desorption ionization (LDI), desorption electrospray ionization (DESI), and rapid evaporative ionization mass spectrometric (REIMS) in combination with Fourier transformationbased mass spectrometry; and (2) healthy/cancerous colorectal tissue analyzed by DESI and REIMS with the latter being combined with time-of-flight mass spectrometry. We demonstrate the capacity of our method to reduce MS-platform specific variation resulting in (1) high inter-platform concordance coefficients of analyte intensities; (2) clear principal component based clustering of analyte profiles according to histological tissue types, irrespective of the used desorption ionization technique or mass spectrometer; and (3) accurate "blind" classification of histologic tissue types using cross-platform normalized analyte profiles.