The pretreatment of biomass has been integrated with enzyme production through the recycling of aqueous fractions. A process integrated with Pleurotus cystidiosus was grown, and enzymatic hydrolysis was realized. Samples of every liquid fraction from the fungal growing medium were analyzed to determine the chemical oxygen demand (OCD), glucose (Glu), xylose (Xyl), and total reducing sugars (RS). Separately, to obtain valuable polymers from this integration process, solid hemicellulose and lignin were isolated from the remaining liquid fractions through pH variation. The composition of the samples was determined using scanning electron microscopy (SEM), optical stereoscopic microscopy, and Fourier transform infrared (FTIR) spectroscopy and was compared with commercial homologs. The maximum conversion of cellulose to glucose by the obtained liquid fraction of the fungal medium was 61.3 ± 0.9% of the theoretical conversion yield of the commercial enzyme. Similarly, the conversion of hemicelluloses to xylose was 69.5 ± 1.5%. Finally, in this work, an integrated platform for cellulose, hemicellulose, lignin, enzymatic extract, and sugars production, which also significantly reduces water consumption, was proposed.