Recent advancements in wireless communication technologies have made Wi-Fi signals indispensable in both personal and professional settings. The utilization of these signals for Human Activity Recognition (HAR) has emerged as a cutting-edge technology. By leveraging the fluctuations in Wi-Fi signals for HAR, this approach offers enhanced privacy compared to traditional visual surveillance methods. The essence of this technique lies in detecting subtle changes when Wi-Fi signals interact with the human body, which are then captured and interpreted by advanced algorithms. This paper initially provides an overview of the key methodologies in HAR and the evolution of non-contact sensing, introducing sensor-based recognition, computer vision, and Wi-Fi signal-based approaches, respectively. It then explores tools for Wi-Fi-based HAR signal collection and lists several high-quality datasets. Subsequently, the paper reviews various sensing tasks enabled by Wi-Fi signal recognition, highlighting the application of deep learning networks in Wi-Fi signal detection. The fourth section presents experimental results that assess the capabilities of different networks. The findings indicate significant variability in the generalization capacities of neural networks and notable differences in test accuracy for various motion analyses.