We investigate the efficiency of Chebyshev Thresholding Greedy Algorithm (CTGA) for an n-term approximation with respect to general bases in a Banach space. We show that the convergence property of CTGA is better than TGA for non-quasi-greedy bases. Then we determine the exact rate of the Lebesgue constants L ch n for two examples of such bases: the trigonometric system and the summing basis. We also establish the upper estimates for L ch n with respect to general bases in terms of quasi-greedy parameter, democracy parameter and A-property parameter. These estimates do not involve an unconditionality parameter, therefore they are better than those of TGA. In particular, for conditional quasi-greedy bases, a faster convergence rate is obtained.
MSC: 41A25; 41A46; 42A10