Haemonchus contortus
is a major constraint in the development of small ruminant subsector due to significant production losses incurred by it. The present study explores the antiparasitic potential of three anthelmintic plants (
Butea monosperma, Vitex negundo
and
Catharanthus roseus (L.) G.Don
) against
H
.
contortus
taking albendazole as the standard.
In silico
molecular docking and pharmacokinetic prediction studies were conducted with known bioactive molecules of these plants (palasonin, vinblastine, vincristine, betulinic acid and ursolic acid) against Glutamate Dehydrogenase (GDH) and tubulin molecules of the parasite. Methanolic extracts of these herbs were fractionated (hexane, ethyl acetate, chloroform and methanol) and used in
in vitro
larvicidal studies. Based on the
in vitro
data, two herbal prototypes were developed and clinically tested.
All the 5 ligand molecules showed better binding affnity for GDH and tubulin protein as compared with albendazole and shared similar binding site in the core of the GDH hexamer with slight variations. Albendazole approximately stacked against GLY190A residue, showing hydrophobic interactions with PRO157A and a Pi-cation electrostatic interaction with ARG390 along with four hydrogen bonds. Vincristine formed 2 pi-anionic electrostatic bonds with ASP158 of B and C subunits alongwith hydrogen bonding and hydrophobic interaction and an additional pi-anion electrostatic interaction at ASP158A for vinblastine. Albendazole bound to α-tubulin next to colchicine site whereas vinblastine is bound at the nearby laulimalide/peloruside site of the dimer. Betulinic acid showed lateral interaction between the H2–H3 loop of one alpha subunit and H10 of the adjacent alpha subunit of two tubulin dimers. Ursolic acid and palasonin bound at the intradimer N site of microtubulin involving the H1–H7 and H1–H2 zone, respectively.
The
in vitro
studies demonstrated good dose dependent anthelmintic potential. Both the prototypes were quite efficacious in clearing the infection, keeping it to a minimal for more than 5 months, probably, through direct anthelmintic effect through GDH, tubulin depolymerization and uncoupling as well as indirectly through immunomodulation along with antioxidant and anti-inflammatory properties.