India is endemic for foot-and-mouth disease (FMD) and in recent years a unique group within serotype A, carrying a codon deletion at an antigenically critical site in capsid protein VP3 has emerged (VP3(59)-deletion group). This tempted us to analyze the noncoding region, which is an under represented area, though critically associated with virus biology and pathogenesis. Analysis of the large fragment of 5' untranslated region (LF-5' UTR) of type A FMD virus revealed discrepancy in the overall tree topology between LF-5' UTR and 1D region possibly due to independent evolution of coding and noncoding regions. The VP3(59)-deletion group maintained its phylogenetic distinctness even at the LF-5' UTR. Eighteen lineage specific signatures detected here support independent evolutionary paths for the lineages. Extensive deletions of 45 and 89 nucleotides corresponding to the pseudoknot region were noticed. Conservation pattern in the 'A(253)AACA' motif in the cre/bus stem-loop indicates the importance of first three 'A' residues in VPg uridylylation. Of the three polypyrimidine tract binding protein (PTB) binding sites mapped on the internal ribosome entry site (IRES), the pyrimidine tract (Py tract) in the loop of domain 2 was found to be maximally conserved and it might be the major PTB binding site. Strikingly, a deletion group lineage specific transversion was noticed in the Py tract at the 3' end of IRES without significantly affecting its in vitro infectious titer. Hence, we presume that for efficient cap-independent viral translation, either a minimum number of pyrimidine residues rather than a complete Py tract or a Py tract tolerating transversions only at specific locations and a core motif 'CUUU' within the Py tract is essential.