The mixing process is a crucially important stage in the operation of biological and chemical microfluidic devices. If the mixing is inadequate, reactants do not fully interact with each other, and the device may not operate properly. This paper describes a simplified microfluidic mixer (different from a chaotic mixer) which can uniformly mix a buffer solution with living cells by applying an AC electric charge. Diffusion of the living cells into the buffer solution occurs rapidly following the interface of the flow stream with the electric charge; no further agitating step is needed. To accomplish this, an asymmetric pair of electrodes was integrated at the inlets of the buffer solution and the cells fluid. When the buffer solution and the cells fluid were introduced into one flow path, they remained limited to that flow stream. When the electrodes were charged, however, the cells in a short distance were efficiently moved into the solution flow, and the original fluids were mixed. The mixing efficiency depends on the polarizability of the cells, and this in turn is governed by the dielectric properties of the cells, the medium, and the solvent. This micro device, capable of efficiently mixing living cells with a buffer solution, may potentially allow biological mixing to be done outside of hospitals, in facilities without biological analyzing instruments. #