The endoplasmic reticulum (ER) is recognized primarily as the site of synthesis and folding of secreted and membrane-bound proteins. The ER provides stringent quality control systems to ensure that only correctly folded, functional proteins are released from the ER and that misfolded proteins are degraded. The efficient functioning of the ER is essential for most cellular activities and for survival. Stimuli that interfere with ER function can disrupt ER homeostasis, impose stress to the ER, and subsequently cause accumulation of unfolded or misfolded proteins in the ER lumen. ER transmembrane proteins detect the onset of ER stress and initiate highly specific signaling pathways collectively called the "unfolded protein response" (UPR) to restore normal ER functions. However, if ER homeostasis cannot be reestablished in response to intense or prolonged ER stress, the UPR induces ER stress-associated apoptosis to protect the organism by removing the stressed cells that produce misfolded or malfunctioning proteins. This chapter summarizes current understanding of ER stress-induced apoptosis and reliable methods to examine ER stress and apoptosis in mammalian cells. Since the liver is the major organ dealing with metabolic or pathological stress and is responsible for the detoxification of chemical compounds, the experimental protocols described here focus on identification and characterization of ER stress-induced apoptosis in mouse liver.
The Endoplasmic Reticulum (ER) and the Unfolded Protein ResponseThe endoplasmic reticulum (ER) is the site of biosynthesis for sterols, lipids, membrane-bound and secreted proteins, and glycoproteins (Gaut and Hendershot, 1993;Kaufman, 1999). In higher eukaryotes, nearly all newly synthesized proteins require folding and/or assembly in the ER prior to trafficking to specific destinations to carry out their functions. As a unique protein-folding compartment and a dynamic calcium store, the ER is very sensitive to alterations in intracellular homeostasis. A number of biochemical, physiological, and pathological stimuli, such as chemicals that disrupt protein folding, nutrient depletion and hypoxia, calcium depletion, reductive or oxidative stress, expression of secretory proteins, expression of mutant difficult-to-fold proteins, unbalanced expression of subunits of protein complexes, elevated lipids or cholesterol, DNA damage, growth arrest, and viral/bacterial infection can disrupt ER homeostasis, impose stress to the ER, and subsequently cause accumulation of unfolded or misfolded proteins in the ER lumen. The cell has evolved highly specific signaling pathways called the unfolded protein response (UPR) to alter intracellular transcriptional and translational programs to deal with the accumulation of unfolded or misfolded proteins. These pathways prevent the accumulation of unfolded protein in the ER lumen by decreasing the protein-folding load, increasing the ER protein-folding capacity, and increasing the degradation of misfolded proteins through processes of ER-associ...