BackgroundCis, cis-muconic acid (MA) is a dicarboxylic acid of recognized industrial value. It provides direct access to adipic acid and terephthalic acid, prominent monomers of commercial plastics.ResultsIn the present work, we engineered the soil bacterium Corynebacterium glutamicum into a stable genome-based cell factory for high-level production of bio-based MA from aromatics and lignin hydrolysates. The elimination of muconate cycloisomerase (catB) in the catechol branch of the β-ketoadipate pathway provided a mutant, which accumulated MA at 100% molar yield from catechol, phenol, and benzoic acid, using glucose as additional growth substrate. The production of MA was optimized by constitutive overexpression of catA, which increased the activity of the encoded catechol 1,2-dioxygenase, forming MA from catechol, tenfold. Intracellular levels of catechol were more than 30-fold lower than extracellular levels, minimizing toxicity, but still saturating the high affinity CatA enzyme. In a fed-batch process, the created strain C. glutamicum MA-2 accumulated 85 g L−1 MA from catechol in 60 h and achieved a maximum volumetric productivity of 2.4 g L−1 h−1. The strain was furthermore used to demonstrate the production of MA from lignin in a cascade process. Following hydrothermal depolymerization of softwood lignin into small aromatics, the MA-2 strain accumulated 1.8 g L−1 MA from the obtained hydrolysate.ConclusionsOur findings open the door to valorize lignin, the second most abundant polymer on earth, by metabolically engineered C. glutamicum for industrial production of MA and potentially other chemicals.Electronic supplementary materialThe online version of this article (10.1186/s12934-018-0963-2) contains supplementary material, which is available to authorized users.