In present study, we have mined a ω-transaminase (ω-TA) from Chloroflexi bacterium from genome database by using an ω-TA sequence ATA117 Arrmut11 from Arthrobacter sp . KNK168 and an amine transaminase from Aspergillus terreus as templates in a BLASTP search and motif sequence alignment. The protein sequence of the ω-TA from C. bacterium shows 38% sequence identity to ATA117 Arrmut11. The gene sequence of the ω-TA was inserted into pRSF-Duet1 and functionally expressed in E. coli BL21(DE3). Results showed that the recombinant ω-TA has a specific activity of 1.19 U/mg at pH 8.5, 40 °C. The substrate acceptability test showed that ω-TA has significant reactivity to aromatic amino donors and amino receptors. More importantly, the ω-TA also exhibited a good affinity towards some cyclic substrates such as 1-Boc-3-piperidone. The homology model of the ω-TA was built by Discovery Studio and docking was performed to describe the relative activity towards some substrates. The ω-TA was evolved by site-saturation mutagenesis and found that the Q192G mutant increased the activity to the (R)-α-methylbenzylamine (MBA) by around seven-fold. The Q192G mutant was then used to convert two cyclic ketones, N -Boc-3-pyrrolidinone and N -Boc-3-aminopiperidine, and the conversions were both improved compared to the parental ω-TA.