2016
DOI: 10.1002/btpr.2264
|View full text |Cite
|
Sign up to set email alerts
|

Characterization of a Saccharomyces cerevisiae fermentation process for production of a therapeutic recombinant protein using a multivariate Bayesian approach

Abstract: The principle of quality by design (QbD) has been widely applied to biopharmaceutical manufacturing processes. Process characterization is an essential step to implement the QbD concept to establish the design space and to define the proven acceptable ranges (PAR) for critical process parameters (CPPs). In this study, we present characterization of a Saccharomyces cerevisiae fermentation process using risk assessment analysis, statistical design of experiments (DoE), and the multivariate Bayesian predictive ap… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2016
2016
2019
2019

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(1 citation statement)
references
References 18 publications
0
1
0
Order By: Relevance
“…In recent work, focus was placed on characterizing the yeast morphological changes and understanding the underlying metabolic mechanisms leading to those modifications triggered by hypoxia at the industrial production scale. The morphology of different cell subpopulations and their distribution in the different phases of the yeast mitotic life cycle at different levels of dissolved oxygen are described using a proven small scale model (SSM) of the production process [13, 14]. From a metabolic perspective, we interpret our results in terms of the reduced availability of precursors triggered by hypoxia resulted in impaired cell wall formation, lack of integrity and functionality.…”
Section: Introductionmentioning
confidence: 99%
“…In recent work, focus was placed on characterizing the yeast morphological changes and understanding the underlying metabolic mechanisms leading to those modifications triggered by hypoxia at the industrial production scale. The morphology of different cell subpopulations and their distribution in the different phases of the yeast mitotic life cycle at different levels of dissolved oxygen are described using a proven small scale model (SSM) of the production process [13, 14]. From a metabolic perspective, we interpret our results in terms of the reduced availability of precursors triggered by hypoxia resulted in impaired cell wall formation, lack of integrity and functionality.…”
Section: Introductionmentioning
confidence: 99%