The sulfonation of 17β-estradiol (E2) by human liver and recombinant sulfotransferases is influenced by environmental contaminants such as hydroxylated metabolites of polychlorinated biphenyls (OHPCBs), which are potent inhibitors, and the therapeutic drug, celecoxib, which affects positional sulfonation of E2. In some locations, the aquatic environment is contaminated by PCBs, OH-PCBs and widely used therapeutic drugs. The objectives of this study were to investigate the sulfonation kinetics of E2 in liver cytosol from channel catfish (Ictalurus punctatus); to examine the effect of OH-PCBs on E2 sulfonation; and to determine if celecoxib altered the position of E2 sulfonation, as it does with human liver cytosol. E2 was converted to both 3-and 17-sulfates by catfish liver cytosol. At E2 concentrations below 1 μM, formation of E2-3-sulfate (E2-3-S) predominated, but substrate inhibition was observed at higher concentrations. Rates of E2-3-S formation at different E2 concentrations were fit to a substrate inhibition model, with K′ m and V′ max values of 0.40 ± 0.10 μM and 91.0 ± 4.7 pmol/min/mg protein, respectively and K i of 1.08 ± 0.09 μM. The formation of E2-17-S fit Michaelis-Menten kinetics over the concentration range 25 nM to 2.5 μM, with K m and V max values of 1.07 ± 0.23 μM and 25.7 ± 4.43 pmol/min/mg protein, respectively. The efficiency (V max /K m ) of formation of E2-3-S was 9.8-fold higher than that of E2-17-S. Several OH-PCBs inhibited E2 3-sulfonation, measured at an E2 concentration of 1 nM. Of those tested, the most potent inhibitor was 4′-OH-CB79, with two chlorine atoms flanking the OH group (IC 50 : 94 nM). The inhibition of estrogen sulfonation by OH-PCBs may disrupt the endocrine system and thus contribute to the known toxic effects of these compounds. Celecoxib did not stimulate E2-17-S formation, as is the case with human liver cytosol, but did inhibit the formation of E2-3-S (IC 50 : 44 μM) and to a lesser extent, E2-17-S (IC 50 : >160 μM), suggesting the previously found effect of celecoxib on E2-17-S formation may be specific to human SULT2A1.