The role of DNA repair by nonhomologous-end joining (NHEJ) in spore resistance to UV, ionizing radiation, and ultrahigh vacuum was studied in wild-type and DNA repair mutants (recA, splB, ykoU, ykoV, and ykoU ykoV mutants) of Bacillus subtilis. NHEJ-defective spores with mutations in ykoU, ykoV, and ykoU ykoV were significantly more sensitive to UV, ionizing radiation, and ultrahigh vacuum than wild-type spores, indicating that NHEJ provides an important pathway during spore germination for repair of DNA double-strand breaks.It has been shown that endospores of gram-positive bacteria can remain viable for at least thousands of years (5, 44, 54; reviewed in reference 31). Bacterial spores persist in a metabolically inactive state, and environmental damage to spore cellular components accumulates unrepaired until germination and outgrowth (32). However, Bacillus subtilis spores are highly resistant to different environmental stresses, such as toxic chemicals and biocidal agents, desiccation, pressure and temperature extremes, and ionizing and UV radiation. The reason for this high resistance to environmental extremes lies partly in the spore structure itself: spores possess thick layers of highly cross-linked coat proteins (13), a modified peptidoglycan spore cortex, and abundant intracellular constituents such as the calcium chelate of dipicolinic acid and small, acidsoluble spore proteins (␣/-type SASP), as protectants of spore DNA (46, 50). Binding of ␣/-type SASP to spore DNA, coupled with spore core dehydration, appears to change the helical conformation of spore DNA from the B form to an A-like form (34, 48), which in turn alters its UV photochemistry to favor the production of 5-thyminyl-5,6-dihydrothymine, the unique spore-specific spore photoproduct (SP) (8,32,35,50). For the removal of the SP, spores possess an SP-specific repair enzyme called SP lyase, encoded by the splB gene, that monomerizes the SP dimer back to two thymine residues in an adenosyl-radical-dependent reaction (4,28,42).While the UV photochemistry of spore DNA and the repair of UV damage to DNA during germination are well described (12,32,33,47,50), there has been relatively little work on the nature of DNA damage in spores caused by ionizing radiation or extreme dryness and on the occurrence of a specific DNA repair system(s) for repair of this damage. It is assumed that DNA double-strand breaks (DSB), which are the most critical damage caused by ionizing radiation (57) and desiccation (9, 10, 39) in vegetative cells, are also induced in bacterial spores. Spores of B. subtilis contain a single chromosome arranged in a toroidal shape (16, 41); therefore, the homologous recombination pathway, which requires at least two homologous chromosomes, cannot operate on DSB during spore germination (55). An alternative repair pathway for DSB induced in spore DNA, nonhomologous-end joining (NHEJ) (3, 56), is considered here. This pathway as it occurs in eukaryotic cells requires a DNA end-binding component called Ku (Ku70 and Ku80) (58). The fir...