Large-flow waste gas generated from the pharmaceutical and chemical industry usually contains low concentrations of VOCs (volatile organic compounds), and it is also the key factor that presents challenges in terms of disposal. To date, due to the limitations of mass transfer rate and microbial degradation ability, the degradation performance of VOCs using the biological method has not been ideal. Therefore, in this study, the sludge from a chlorobenzene-containing wastewater treatment plant was inoculated into our experimental bio-trickling filter (BTF) to explore the feasibility of domestication and degradation of gaseous chlorobenzene by highly active microorganisms. The kinetics of its mass transfer reaction and microbial community dynamics were also discussed. Moreover, the main process parameters of BTF for chlorobenzene degradation were optimized. The results showed that the degradation effect of chlorobenzene reached more than 85% at an inlet concentration of chlorobenzene 700 mg·m−3, oxygen concentration of 10%, and an empty bed retention time (EBRT) of 80 s. The mass transfer kinetic analysis indicated that the process of chlorobenzene degradation in the BTF occurred between the zero-stage reaction and the first-stage reaction. This BTF contributed significantly to the biodegradability of chlorobenzene, overcoming the limitation of gas-to-liquid/solid mass transfer of chlorobenzene. The analysis of the species diversity showed that Thermomonas, Petrimona, Comana, and Ottowia were typical organic-matter-degrading bacteria that degraded chlorobenzene efficiently with xylene present.