Glioblastoma (GBM) is the most common intracranial tumor with characteristic of malignancy. Resveratrol, a natural originated polyphenolic compound, has been reported to act as a potential radiosensitizer in cancer therapy. Magnetic resonance imaging (MRI) is the first choice for the diagnosis, pathological grading, and efficacy evaluation of GBM. In this study, MRI was applied to observe whether resveratrol could intensify the anti-GBM tumor effect by enhancing antitumor immunity during radiotherapy. We established an intracranial C6 GBM model in SD rats, treated with radiation and resveratrol. The increased body weight, the inhibition on mortality, and tumor volume in radiated- GBM rats were further enhanced by resveratrol addition, while the pathological damage of brain was alleviated. The modulation of radiation on inflammation, cell cycle, and apoptosis was strengthened by resveratrol; and Ki-67, PD-L1, and cell cycle- and apoptosis-related protein expressions were also improved by cotreatment. Besides, cotreatment attenuated DNA damage and induced G0/G1-phase cell arrest of GBM rats, accompanied with the changed expression of ATM-AKT-STAT3 pathway-related proteins. Moreover, the percentages of CD3+CD8+T cells and IFN-γ+CD8+T cells were enhanced, while (CD4+CD25+Foxp3)/CD4+T cells were decreased by radiation or resveratrol, which was strengthened by cotreatment. The modulation effect of cotreatment on CD3, Foxp3, and IFN-γ levels was also stronger than radiation or resveratrol alone. To conclude, resveratrol enhanced the effect of radiotherapy by inducing DNA damage and antitumor immunity in the intracranial C6 GBM.