A novel bifidobacteria (designated S053-2T) was isolated from the gut of honeybee (Apis mellifera). Strain S053-2T was characterized using a polyphasic taxonomic approach. The result of 16S rRNA gene sequence analysis indicated that strain S053-2T was phylogenetically related to the type strains of
Bifidobacterium asteroides
,
Bifidobacterium indicum
,
Bifidobacterium actinocoloniiforme
,
Bifidobacterium xylocopae
,
Bifidobacterium coryneforme
,
Bifidobacterium apousia
,
Bifidobacterium choladohabitans
and
Bifidobacterium polysaccharolyticum
, and had 95.5–99.7 % 16S rRNA gene sequence similarities. Based on the 16S rRNA gene sequence analysis, strain S053-2T was most closely related to the type strain of
B. asteroides
, having 99.7 % 16S rRNA gene sequence similarity. Strain S053-2T had relatively low (91.6–95.7 %) pheS, atpA, clpC, dnaG, fusA, glnA, glyS, hsp60, argS, pyrG and recA sequence similarities to the type strain of
B. asteroides
. Strain S053-2T had 94.5–95.3% atpA, clpC, dnaG, dnaK and pyrG sequence similarities to the type strain of
B. apousia
. The phylogenomic tree indicated that strain S053-2T belonged to the
B. asteroides
group, and was most closely related to the type strains of
B. asteroides
,
B. apousia
,
B. choladohabitans
and
B. polysaccharolyticum
, and distantly related to type strains of other phylogenetically related species in the
B. asteroides
group. Strain S053-2T shared the highest average nucleotide identity (ANI, 93.8 %), digital DNA–DNA hybridization (dDDH, 52.4 %) and average amino acid identity (AAI, 95.6%) values with
B. apousia
W8102T. Strain S053-2T shared 91.1 % ANI, 41.9 % dDDH and 92.5 % AAI values with
B. asteroides
DSM 20089T. Acid production from l-arabinose, d-xylose, d-mannose, amygdalin, cellobiose, maltose, melibiose, sucrose, raffinose, gentiobiose and l-fucose, and activity of esterase lipase (C8) and α-fucosidase could differentiate strain S053-2T from
B. asteroides
DSM 20089T. Acid production from d-mannose, maltose, sucrose, melezitose and gentiobiose, and activity of α-fucosidase could differentiate strain S053-2T from
B. apousia
W8102T. Based upon the data obtained in the present study, a novel species, Bifidobacterium mizhiense sp. nov., is proposed, and the type strain is S053-2T (=JCM 34710T=CCTCC AB 2021129T).