Abstract:In this paper, we characterize the set of all binary algebraic (or polynomial) operations of an idempotent algebra that has at least one r-ary algebraic operation, (r ≥ 2), depending on every variable such that there is no an (r + 2)-ary algebraic operation depending on at least (r + 1) variables. We prove that this set forms a finite Boolean algebra, and then we characterize this Boolean algebra.
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.