Maillard reaction is known to result in loss of nutrients, particularly that of essential amino acids; decrease in digestibility and safety issues due to the development of toxic compounds. Maillard reaction products are also known to cause oxidation of tissues and inflammation, thus increasing the risk of cardiovascular diseases and diabetes. The aim of this review is to present a detailed information about the role of foodborne constituents as antibrowning agents to significantly reduce the harmful compounds like advanced glycation end products (AGEs) during food processing. This review includes strategies involving addition of amino acids, aromatic compounds, vitamins, modification of amino acids, and reducing sugars as antibrowning agents to reduce the AGEs. The role of Food borne functional ingredients such as catechin, epicathechin, luteolin, and ferulic acids as inhibitors of AGEs is also discussed. Among the naturally occurring inhibitors, genistein could be a crucial and safe agent to reduce reactive intermediates.
Practical applicationsMaillard reaction leads to changes in food color, protein functionality, protein digestibility, and loss of nutrient from foods. Maillard reaction products (MRPs) is also reported to be associated with various inflammatory conditions and may contribute to the progress of chronic diseases, including diabetes. It is hence necessary to reduce the MRPs, in both food and biological products, to offset this phenomenon. Among the strategies adopted till date, chemical agents could inhibit reactive carbonyl species and reactive oxygen species, but also are known to elicit serious side effects.Dietary flavonoids could be a very good inhibitor of MRPs both in biological and in food systems. It could be suggested that dietary flavonoids and isoflavones can be used as antibrowning agents in food and pharmaceutical industries particularly for targeted and sustained release of hypoglycemic drug in the intestines.
K E Y W O R D Sadvanced glycation end products, antibrowning agents, genistein, Maillard reaction, vitamins