In this study, the intracellular proteome of Escherichia coli O157:H7 strain EDL933 was analyzed by two-dimensional gel electrophoresis and matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) spectrometry after growth in simulated ileal environment media (SIEM) and simulated colonic environment media (SCEM) under aerobic and microaerobic conditions. Differentially expressed intracellular proteins were identified and allocated to functional protein groups. Moreover, metabolic fluxes were analyzed by isotopologue profiling with [U-13 C 6 ]glucose as a tracer. The results of this study show that EDL933 responds with differential expression of a complex network of proteins and metabolic pathways, reflecting the high metabolic adaptability of the strain. Growth in SIEM and SCEM is obviously facilitated by the upregulation of nucleotide biosynthesis pathway proteins and could be impaired by exposition to 50 M 6-mercaptopurine under aerobic conditions. Notably, various stress and virulence factors, including Shiga toxin, were expressed without having contact with a human host.