ABSTRACT:In humans, the antimalarial drug chloroquine (CQ) is metabolized into one major metabolite, N-desethylchloroquine (DCQ). Using human liver microsomes (HLM) and recombinant human cytochrome P450 (P450), we performed studies to identify the P450 isoform(s) involved in the N-desethylation of CQ. In HLM incubated with CQ, only DCQ could be detected. Apparent K m and V max values (mean ؎ S.D.) for metabolite formation were 444 ؎ 121 M and 617 ؎ 128 pmol/min/mg protein, respectively. In microsomes from a panel of 16 human livers phenotyped for 10 different P450 isoforms, DCQ formation was highly correlated with testosterone 6-hydroxylation (r ؍ 0.80; p < 0.001), a CYP3A-mediated reaction, and CYP2C8-mediated paclitaxel ␣-hydroxylation (r ؍ 0.82; p < 0.001). CQ N-desethylation was diminished when coincubated with quercetin (20-40% inhibition), ketoconazole, or troleandomycin (20-30% inhibition) and was strongly inhibited (80% inhibition) by a combination of ketoconazole and quercetin, which further corroborates the contribution of CYP2C8 and CYP3As. Of 10 cDNAexpressed human P450s examined, only CYP1A1, CYP2D6, CYP3A4, and CYP2C8 produced DCQ. CYP2C8 and CYP3A4 constituted low-affinity/high-capacity systems, whereas CYP2D6 was associated with higher affinity but a significantly lower capacity. This property may explain the ability of CQ to inhibit CYP2D6-mediated metabolism in vitro and in vivo. At therapeutically relevant concentrations (ϳ100 M CQ in the liver), CYP2C8, CYP3A4, and, to a much lesser extent, CYP2D6 are expected to account for most of the CQ N-desethylation.