This study addresses the potential contribution of the first pair of Galileo FOC satellites sent into incorrect highly eccentric orbits for geodetic and surveying applications. We began with an analysis of the carrier to noise density ratio and the stochastic properties of GNSS measurements. The investigations revealed that the signal power of E14 & E18 satellites is higher than for regular Galileo satellites, what is related to their lower altitude over the experiment area. With regard to the noise of the observables, there are no significant differences between all Galileo satellites. Furthermore, the study confirmed that the precision of Galileo data is higher than that of GPS, especially in the case of code measurements. Next analysis considered selected domains of precise instantaneous medium-range positioning: ambiguity resolution and coordinate accuracy as well as observable residuals. On the basis of test solutions, with and without E14 & E18 data, we found that these satellites did not noticeably influence the ambiguity resolution process. The discrepancy in ambiguity success rate between test solutions did not exceed 2%. The differences between standard deviations of the fixed coordinates did not exceed 1 mm for horizontal components. The standard deviation of the L1/E1 phase residuals, corresponding to regular GPS and Galileo, and E14 & E18 satellite signals, was at a comparable level, in the range of 6.5-8.7 mm. The study revealed that the Galileo satellites with incorrect orbits were fully usable in most geodetic, surveying and many other post-processed applications and may be beneficial especially for positioning during obstructed visibility of satellites. This claim holds true when providing precise ephemeris of satellites.