A: Three dimensional (3D) characterization of shales has recently attracted wide attentions in relation to the growing importance of shale oil and gas. Obtaining a complete 3D compositional distribution of shale has proven to be challenging due to its multi-scale characteristics. A combined multi-energy X-ray micro-CT technique and data-constrained modelling (DCM) approach has been used to quantitatively investigate the multi-scale mineral and porosity distributions of a heterogeneous shale from the Junger Basin, northwestern China by sub-sampling. The 3D sub-resolution structures of minerals and pores in the samples are quantitatively obtained as the partial volume fraction distributions, with colours representing compositions. The shale sub-samples from two areas have different physical structures for minerals and pores, with the dominant minerals being feldspar and dolomite, respectively. Significant heterogeneities have been observed in the analysis. The sub-voxel sized pores form large interconnected clusters with fractal structures. The fractal dimensions of the largest clusters for both sub-samples were quantitatively calculated and found to be 2.34 and 2.86, respectively. The results are relevant in quantitative modelling of gas transport in shale reservoirs.
K: Analysis and statistical methods; Computerized Tomography (CT) and Computed Radiography (CR); Computing (architecture, farms, GRID for recording, storage, archiving, and distribution of data); Software architectures (event data models, frameworks and databases) 1Corresponding author.