2014
DOI: 10.1063/1.4897279
|View full text |Cite
|
Sign up to set email alerts
|

Characterization of electron-beam recorded microdomain patterns on the nonpolar surface of LiNbO3 crystal by nondestructive methods

Abstract: We report on characterization of the electron-beam fabricated planar domain gratings on the nonpolar (Y-) surface of LiNbO3 crystals performed with the use of AFM and confocal second harmonic generation (SHG) microscopy. The dependence of domain formation on the irradiation conditions was investigated. The relation of domain thicknesses to the electron penetration depth is experimentally proved. In particular, the possibility of controlling the thickness of planar domains by varying acceleration electron-beam … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
8
0
7

Year Published

2015
2015
2018
2018

Publication Types

Select...
8

Relationship

2
6

Authors

Journals

citations
Cited by 16 publications
(15 citation statements)
references
References 23 publications
0
8
0
7
Order By: Relevance
“…These results provide a calibration curve, which permits one to specify T d by matching the accelerating voltage U. The validity of this approach was confirmed experimentally both in bulk crystals [8][9][10][11] and He-implanted optical waveguides on the nonpolar LiNbO 3 surfaces. 12 By analogy with the case of in-plane domain motion under AFM-tip voltages applied to the nonpolar crystal surfaces, 25 the EB-induced field decreases with the distance from the irradiation point, so the domain thickness T d is expected to lowered along the polar axis.…”
Section: The Domain Depth T Dmentioning
confidence: 62%
See 1 more Smart Citation
“…These results provide a calibration curve, which permits one to specify T d by matching the accelerating voltage U. The validity of this approach was confirmed experimentally both in bulk crystals [8][9][10][11] and He-implanted optical waveguides on the nonpolar LiNbO 3 surfaces. 12 By analogy with the case of in-plane domain motion under AFM-tip voltages applied to the nonpolar crystal surfaces, 25 the EB-induced field decreases with the distance from the irradiation point, so the domain thickness T d is expected to lowered along the polar axis.…”
Section: The Domain Depth T Dmentioning
confidence: 62%
“…In the given paper, we summarize our recent results 4,7-13 on EBDW on the nonpolar LiNbO 3 surfaces. In addition to some above-mentioned practical aspects, the convenience of this EBDW geometry for experimental studies is due to the fact that the written domains are accessible for 3D characterization, 8 which permits us to discuss the mechanism of domain growth. Further, we describe the dependence of domain formation on irradiation conditions and some material characteristics.…”
Section: Introductionmentioning
confidence: 99%
“…In [13][14][15][16], electron beam recording of micro domains and microdomain gratings on nonpolar X and Y surfaces of LiTaO 3 and LiNbO 3 crystals and in Ti implanted planar waveguides on LiNbO 3 Y cuts was performed [14]. During local irradiation of the nonpolar crystal surface, domains nucleated in the irradiation region frontally grow along the polar axis Z in the surface layer of thickness of about several micrometers.…”
Section: Introductionmentioning
confidence: 99%
“…Моделирование позволяет достаточно просто и наглядно исследовать строение кластеров, изменение величины дипольного момента (определяющего спонтанную поляризацию и сегнетоэлектрические свойства кристалла) при изменении характеристик и состава кластеров. [2,[4][5][6], прямое экспериментальное исследование структуры которых, особенно наноразмерных кластеров, исследование динамики их развития в зависимости от состава кристалла существенно затруднено. Кластеры, как и точечные дефекты катионной подрешетки, нарушают трансляционную инвариантность структуры без изменения общей симметрии элементарной ячейки.…”
Section: Introductionunclassified
“…Дефекты в виде кислородно-октаэдрических кластеров с различными примесными ионами дают фотохромный эффект и являются аккумуляторами кислорода, что существенно ухудшает оптическое качество кристалла. Кроме того, на дефектах локализуются электроны, что оказывает влияние на эффект фоторефракции [5][6][7].…”
Section: Introductionunclassified