Optimizing profitability is a challenge that strawberry farmers must face in order to remain competitive. Within this framework, plant density can play a central role. The aim of this two-year study was to investigate how planting density can induce variations in plant growth and yield performances in an alpine mountain strawberry cultivation (Martell Valley, South Tyrol, Italy), and consequently quantify the farm profit. Frigo strawberry plants cv. Elsanta were planted in soil on raised beds and subjected to five different planting density levels (30,000 and 45,000 as large spacing; 60,000 as middle spacing; 90,000 and 100,000 plants ha−1 as narrow spacing, corresponding to a plant spacing of 28, 19, 14, 9, and 8.5 cm, respectively). Our findings indicate that the aboveground biomass in plants subjected to low planting density was significantly increased by +50% (end of first year) and even doubled in the second year in comparison with plants in high planting density. Those results were related to higher leaf photosynthetic rate (+12%), and the number of crowns and flower trusses per plant (+40% both) (p < 0.05). The low yield (about 300 g plant−1) observed in the high planting density regime was attributable to smaller fruit size during the first cropping year and to both a reduced number of flowers per plant and fruit size during the second year (p < 0.05). Although the highest yield (more than 400 g plant−1) was obtained with wide plant spacing, the greatest yield per hectare was achieved with high planting densities (28 t ha−1 in comparison with 17 t ha−1 with low plant density level). However, the farm profit must take into account the costs (especially related to the plant material and harvesting costs) that are higher under the high planting density compared with the other density regimes. Indeed, the maximum farm profit was reached with a density of 45,000 plants ha−1 which corresponded to EUR 22,579 ha−1 (over 2 years). Regarding fruit quality, fruits coming from the low plant density level showed a significantly higher color index (+15% more red color) than fruits from high plant density (p < 0.05). In conclusion, our results suggest that a middle planting density can be a fair compromise in terms of plant growth, yield, and farm profit.