Objectives: Analysis of DNA from small numbers of cells, such as fetal cells in maternal blood, is a major limiting factor for their use in clinical applications. Traditional methods of single-cells whole genome amplification (SCs-WGA) and accurate analysis have been challenging to date. Our purpose was to assess the feasibility of using a few fetal cells to determine fetal sex and major chromosomal abnormalities by quantitative fluorescent polymerase chain reaction (QF-PCR). Methods: Cultured cells from 26 amniotic fluid samples were used for standard DNA extraction and recovery of 5 fetal cells by laser-capture microdissection. SCs-WGA was performed using the DNA from the microdissected cells. PCR amplification of short tandem repeats specific for chromosomes 13, 18, 21, X and Y was performed on extracted and amplified DNA. Allele dosage and sexing were quantitatively analyzed following separation by capillary electrophoresis. Results: Microsatellite QF-PCR analysis showed high concordance in chromosomal copy number between extracted and amplified DNA when 5 or more cells were used. Results were in concordance with that of conventional cytogenetic analysis. Conclusion: Satisfactory genomic coverage can be obtained from SCs-WGA. Clinically, SCs-WGA coupled with QF-PCR can provide a reliable, accurate, rapid and cost-effective method for detection of major fetal chromosome abnormalities.