Contactless capacitance transient techniques have been applied to local mapping of interface traps of a semiconductor wafer. In contactless capacitance transient techniques, a Metal-Air gap-Oxide-Semiconductor (MAOS) structure is used instead of a conventional Metal-Oxide-Semiconductor (MOS) structure. The local mapping of interface traps was obtained by using a contactless Isothermal Capacitance Transient Spectroscopy (ICTS), which is one of the contactless capacitance transient techniques. The validity of the contactless ICTS was demonstrated by characterizing a partially Au-doped Si wafer. The results revealed that local mapping of interface traps using contactless capacitance transient techniques is effective in wafer inspection and is a promising technique for the development of MOS devices and solar cells with high reliability and high performance.