A great interest has recently been focused on lycopene and β-carotene, because of their antioxidant action in the organism. Red-flesh watermelon is one of the main sources of lycopene as the most abundant carotenoid. The use of near-infrared spectroscopy (NIRS) in post-harvesting has permitted us to rapidly quantify lycopene, β-carotene, and total soluble solids (TSS) on single intact fruits. Watermelons, harvested in 2013–2015, were submitted to near-infrared (NIR) radiation while being transported along a conveyor belt system, stationary and in movement, and at different positions on the belt. Eight hundred spectra from 100 samples were collected as calibration set in the 900–1700 nm interval. Calibration models were performed using partial least squares (PLS) regression on pre-treated spectra (derivatives and SNV) in the ranges 2.65–151.75 mg/kg (lycopene), 0.19–9.39 mg/kg (β-carotene), and 5.3%–13.7% (TSS). External validation was carried out with 35 new samples and on 35 spectra. The PLS models for intact watermelon could predict lycopene with R2 = 0.877 and SECV = 15.68 mg/kg, β-carotene with R2 = 0.822 and SECV = 0.81 mg/kg, and TSS with R2 = 0.836 and SECV = 0.8%. External validation has confirmed predictive ability with R2 = 0.805 and RMSEP = 16.19 mg/kg for lycopene, R2 = 0.737 and RMSEP = 0.96 mg/kg for β-carotene, and R2 = 0.707 and RMSEP = 1.4% for TSS. The results allow for the market valorization of fruits.