Dicrocoelium lancet flukes cause significant production loss in ruminant livestock. Although co-infection with multiple Dicrocoelium species within a host is common, techniques for studying the composition of these complex parasite communities are lacking. The pathogenicity, epidemiology, and therapeutic susceptibility of different helminth species vary, and little is known about the interactions that take place between co-infecting species and their hosts. Here, we describe the first applicationof metabarcoding deep amplicon sequencing method to studythe Dicrocoelium species in sheep and goats. First, rDNA ITS-2 sequences of four Dicrocoelium species (Dicrocoelium dendriticum, Dicrocoelium hospes, Dicrocoelium orientalis, and Dicrocoelium chinensis) were extracted from the NCBI public database. Phylogenetic analysis revealed separate clades of Dicrocoelium species; hence, molecular differentiation between each species is possible in co-infections. Second, 202 flukes belonging to seventeen host populations (morphologically verified as belonging to the Dicrocoelium genus) were evaluated to determine the deep amplicon sequencing read threshold of an individual fluke for each of the four species. The accuracy of the method in proportional quantification of samples collected from single hosts was further assessed. Overall, 198 (98.01%) flukes were confirmed as D. dendriticum and 1.98% produced no reads. The comparison of genetic distances between rDNA ITS-2 revealed 86% to 98% identity between the Dicrocoelium species. Phylogenetic analysis demonstrated a distinct clustering of species, apart from D. orientalis and D. chinensis, which sit very close to each other in a single large clade whereas D. hospes and D. dendriticum are separated into their own clade. In conclusion each sample was identified as D. dendriticum based on the proportion of MiSeq reads and validated the presence of this group of parasites in the Gilgit Baltistan and Khyber Pakhtunkhwa provinces of Pakistan. The metabarcoding deep amplicon sequencing technology and bioinformatics pathway have several potential applications, including species interactions during co-infections, identifying the host and geographical distribution of Dicrocoelium in livestock, drug therapy response evaluation and understanding of the emergence and spread of drug resistance.