Silver nanoparticles (AgNPs) have become interesting metal nanoparticles for filler composite electroactive bone scaffold due to its favorable electrical conductivity, chemical stability, and antibacterial activity. The green synthesis method was selected to produce AgNPs because of using safer solvents, minimizing dangerous reagents, and providing benign response conditions suitable for medical applications. In this study, AgNPs were prepared by a green synthesis approach using Indonesian wild honey with a wider pH range (5, 8, 11). Based on visual observation, UV-Vis spectroscopy, dynamic light scattering (DLS), and transmission electron microscopy (TEM) data, increasing pH leads to faster formation of AgNPs and smaller particle size of AgNPs. It was found that the smallest particle size of AgNPs (hydrodynamic diameter is 46.5 nm from DLS result and the actual particle size is 6.3 ± 1.5 nm from TEM result) was generated at pH 11.