Commercialized polyurethane foam products for automobile steering wheels have been committed to the development of products with comprehensive properties such as low density, high production efficiency and environmental protection. Based on this, this article has launched a series of experiments to explore the effects of different types of chain extenders, blowing agents and catalysts on the mechanical properties, cell structure, skin and reactivity of self-skinning polyurethane foams for automobile steering wheels. The results show that the hardness and tensile strength of the foam gradually decrease with the chain growth of small molecular chain extenders (ethylene glycol, 1.3-propanediol, 1.4-butanediol), and the elongation at break increases gradually. The foaming agent formic acid is more conducive than water as it favors the formation of small but compact cells, thus dense skin. The catalytic efficiency of non-reactive catalysts (A1, KC101 and DabcoEG) is higher than that of reactive catalysts (LED-103, ZR-50, DPA). The theoretical research for the development of high-performance and high-efficiency polyurethane foam products for automobile steering wheels.