Polypropylene is used in the textile industry in the manufacturing of plastic yarns, tapes, etc., but its low tensile strength and Young's modulus limits its associated applications. Composites of polypropylene with reinforcement of CaCO3 and rice husk ash were processed by compression molding. Bimodal porosity in rice husk ash particles has shown an improved interfacial anchoring effect via capillary effect resulting in enhanced mechanical properties, whereas such an effect is not observed with CaCO3 reinforcement in polypropylene matrix. On reinforcement with 10 wt % of each of rice husk ash and CaCO3, thermal decomposition temperature of polypropylene (333.3 °C) shifted to higher value of 415.9 °C and polypropylene Young's modulus (749.5 MPa) increased to 789.5 MPa (by 5.3%), but tensile strength decreased from 23.5 to 21.2 MPa (by 2.3 MPa only). The isolated contribution of CaCO3 and rice husk ash has been delineated, and resulting interfacial strengths have been quantified using analytical models. Rice husk ash has shown a stronger interfacial anchoring and can effectively replace CaCO3 as reinforcement for achieving improved mechanical and thermal properties of polypropylene composites. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 46989.